小令童鞋

梅干菜你个小酥饼哦。

文章

评估方法详解

模型评估的相关方法详解。模型评价是指对于已经建立的一个或多个模型,根据其模型的类别,使用不同的指标评价其性能优劣的过程。常用的聚类模型评价指标有ARI评价法(兰德系数)、AMI评价法(互信息)、V-measure评分、FMI评价法和轮廓系数等。常用的分类模型评价指标有准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1值(F1 Value)、ROC和AUC等。常用的回归模型评价指标有平均绝对误差、均方根误差、中值绝对误差和可解释方差值等。

目标检测

计算机视觉中关于图像识别有四大类任务: 分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。 定位-Location:解决“在哪里?”的问题,即定位出这个目标的的位置。 检测-Detection:解决“是什么?在哪里?”的问题,即定位出这个目标的的位置并且知道目标物是什么。 分割-Segmentation:分为实例的分割(Instance-level)和场景分割(Scene-level),解决“每一个像素属于哪个目标物或场景”的问题。

朴素贝叶斯

叶斯分类器是一种概率框架下的统计学习分类器,对分类任务而言,假设在相关概率都已知的情况下,贝叶斯分类器考虑如何基于这些概率为样本判定最优的类标。在开始介绍贝叶斯决策论之前,我们首先来回顾下概率论委员会常委--贝叶斯公式。

深入理解L1,L2正则化

正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称。正则化是在经验风险上面加了一个正则化项或者惩罚项,正则化函数一般是模型法则度的单调增函数,模型越负责,正则化值就越大.

梅干菜你个小酥饼哦。

© 2020 小令童鞋

Powered by 菠萝博客 Bolo
Theme bolo-sakura by Mashiro
浏览 89856 文章 78 评论 148
浙ICP备19040285号-1

浙公网安备 33011002014174号

浙公网安备 33011002014174号

主题 | Theme