评估方法详解

模型评估的相关方法详解。模型评价是指对于已经建立的一个或多个模型,根据其模型的类别,使用不同的指标评价其性能优劣的过程。常用的聚类模型评价指标有ARI评价法(兰德系数)、AMI评价法(互信息)、V-measure评分、FMI评价法和轮廓系数等。常用的分类模 ......

深度学习基础知识详解

深度学习基础知识详解。

机器学习数学基础

机器学习数学基础,学习机器学习的必备知识。

目标检测

计算机视觉中关于图像识别有四大类任务: 分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。 定位-Location:解决“在哪里?”的问题,即定位出这个目标的的位置。 检测-Detection ......

朴素贝叶斯

叶斯分类器是一种概率框架下的统计学习分类器,对分类任务而言,假设在相关概率都已知的情况下,贝叶斯分类器考虑如何基于这些概率为样本判定最优的类标。在开始介绍贝叶斯决策论之前,我们首先来回顾下概率论委员会常委--贝叶斯公式。

ResNet 详解

深度网络随着层数不断加深,可能会引起梯度消失/梯度爆炸的问题: “梯度消失”:指的是即当梯度(小于1.0)在被反向传播到前面的层时,重复的相乘可能会使梯度变得无限小。 “梯度爆炸”:指的是即当梯度(大于1.0)在被反向传播到前面的层时,重复的相乘可能会使 ......

卷积神经网络

卷积神经网络沿用了普通的神经元网络即多层感知器的结构,是一个前馈网络。以应用于图像领域的CNN为例,大体结构如图。

神经网络简介

一直沿用至今的“M-P神经元模型”正是对这一结构进行了抽象,也称“阈值逻辑单元“,其中树突对应于输入部分,每个神经元收到n个其他神经元传递过来的输入信号,这些信号通过带权重的连接传递给细胞体,这些权重又称为连接权(connection weight)。细胞 ......

The RavenClaw dialog management framework 论文阅读

本文描述了一个基于计划的、独立于任务的对话管理框架RavenClaw。该框架的一个关键特点是,它将对话控制逻辑的特定领域方面与独立于领域的对话技巧隔离开来,并在这个过程中促进了在复杂的、面向任务的领域中运行的混合主动系统的快速发展。系统开发人员可以专注于描 ......

Dialogue Transformers 论文详解

论文中引入 transformer 的结构,其中注意力模型在对话轮的顺序上面起了了作用.最近我们使用递归神经网络多轮对话的上下文中用户说的话,但是我们原本认为注意力模型会更适合多轮场景.默认情况下,RNN假设每个选项和完整的序列有关,但是一轮对话当中包括一 ......