The RavenClaw dialog management framework 论文阅读 有更新! 2024年07月28日 23:32:08 | 2,040 浏览 | 0 评论 | 论文 机器学习 本文描述了一个基于计划的、独立于任务的对话管理框架RavenClaw。该框架的一个关键特点是,它将对话控制逻辑的特定领域方面与独立于领域的对话技巧隔离开来,并在这个过程中促进了在复杂的、面向任务的领域中运行的混合主动系统的快速发展。系统开发人员可以专注于描述对话框任务控制逻辑,而RavenClaw对话框引擎则透明地支持和执行大量与领域无关的会话技能,如错误处理、计时和轮流。
Dialogue Transformers 论文详解 有更新! 2024年07月28日 23:32:33 | 2,725 浏览 | 0 评论 | 论文 机器学习 论文中引入 transformer 的结构,其中注意力模型在对话轮的顺序上面起了了作用.最近我们使用递归神经网络多轮对话的上下文中用户说的话,但是我们原本认为注意力模型会更适合多轮场景.默认情况下,RNN假设每个选项和完整的序列有关,但是一轮对话当中包括一些交错的对话逻辑在里面. transformer 模型可以选择忽略或者选择对话的一部分内容.们比较了 Transformer Embedding Dialogue对话策略对LSTM和REDP的政策.旨在克服RNN的这一限制。我们证明了TED的政策无论是在准确性还是速度上,行为都是比较有利的。